23 April 2014

The Molecular Ecologist: Scanning the genome for local adaptation

The collection locations for plant lines sampled in my analysis. Figure 1 from Yoder et al. (2014).
This week at The Molecular Ecologist, I've just posted a new discussion of the latest publication to come out of my postdoctoral research with the Medicago HapMap Project. It's an attempt to find genome regions that might be important for adaptation to climate, by scanning through a whole lot of genetic data from plants collected in different climates.

This is what’s known as a “reverse ecology” approach—it skips over the process of identifying specific traits that are important for surviving changing climates, and instead uses population genetic patterns to infer what’s going on. One approach for such a scan is presented in my latest paper, which is in this month’s issue of Genetics. Essentially I think of this as what you can do, given a lot of genetic data for a geographically distributed sample—in this case for barrel medick, or Medicago truncatula. Medicago truncatula is a model legume species, which has been used in a great deal of laboratory and greenhouse experimentation—but in this project, I tried to treat M. truncatula as a “field model” organism.

For a run-down of what I did, and what I found, go read the whole post—or check out the paper itself [PDF].◼

No comments:

Post a Comment