03 April 2009

Speciation changes ecosystem

ResearchBlogging.orgWe know that ecosystem processes can act on organisms to help create reproductive isolation and speciation - now, a new paper released online in advance of publication in Nature shows that speciation can change the ecosystem [$-a].

The study's authors are a group of University of British Columbia scientists, including Luke Harmon (who occasionally blogs at Dechronization) and Simone Des Roches, who have since come to my department at UI as a faculty member and doctoral student, respectively. They focus on the case of ecological speciation in sticklebacks (Gasterosteus aculeatus), which have repeatedly into evolved two reproductively isolated, ecologically different forms [$-a] after colonizing North American freshwater lakes from the ocean about 10,000 years ago. One of the two forms is "limnetic," living in open water near the surface and feeding on plankton; the other is "benthic," living on lake bottoms and feeding on invertebrates.


A stickleback
Photo by frequency.
Harmon et al. reasoned that the presence of these two different fish must have a substantial effect on lake food webs. To test this hypothesis, they set up mesocosms - big cattle tanks seeded with a standard mix of sediment, plankton, and invertebrates - and introduced either (1) sticklebacks of the "generalized" type ancestral to the benthic and limnetic types, (2) either the benthic or limnetic type alone, or (3) both the benthic and limnetic types together. They found that the fish species present in the mesocosm strongly affected the plankton species diversity - limnetic-type nearly eliminated one of their preferred prey species - and on measures of total ecosystem productivity and metabolic activity.

Perhaps the most important effect was on dissolved organic content (DOC) and light transmission in the water column. Mesocosms containing both fish types had about the same amount of (non-living) organic material as those containing the generalist ancestor, but the two-species treatment changed the DOC composition to make the water column more transparent to light. In a real lake, this effect could significantly change the productivity and composition of the aquatic plant community, which would in turn reshape the rest of the food web.

The buzzword for this phenomenon is "ecosystem engineering," which the ESA blog puts front-and-center in its discussion of this paper. I think Harmon et al.'s result is most interesting as the closing of a feedback loop between the ecosystem and a population undergoing speciation. It's evidence that a speciation event can actually alter the conditions that created it in the first place - which might prevent future speciation events, or create opportunities for new ones.

Reference

Harmon, L., B. Matthews, S. Des Roches, J. Chase, J. Shurin, & D. Schluter (2009). Evolutionary diversification in stickleback affects ecosystem functioning Nature DOI: 10.1038/nature07974

Vines, T., & D. Schluter (2006). Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments Proc. R. Soc. B, 273 (1589), 911-6 DOI: 10.1098/rspb.2005.3387

No comments:

Post a Comment